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MULTICHANNEL RELATIVE-ENTROPY SPECTRUM ANALYSIS

I. INTRODUCTION

We examine the problem of estimating power spectra and cross spectra for multiple signals,
given selected correlations of various linear combinations of the signals, and given an initial esti-
mate of the spectral density matrix. We present a method that produces final estimates that are
consistent with the given correlation information and otherwise as similar as possible to the initial
estimates in a precise information-theoretic sense. The method is an extension of the Relative-
Entropy Spectrum Analysis (RESA) of Shore fij and of the Maximum-Entropy Spectral Analysis
(MESA) of Burg [2, 31. It reduces to RESA when there is a single signal and to MESA when the
initial estimate is flat.

MESA starts with a set of p known data correlations. It then estimates a probability den-
sity for the signal that has as large an entropy as possible (is maximally "flat") but still satisfies
the known correlations. Intuitively, the method seeks the most "conservative" density estimate
that would explain the observed data. The resulting algorithm fits a smooth pth order autoregres-

* sive power-spectrum model to the known correlations. This technique gives good, high-resolution
spectrum estimates, particularly if the signal either is sinusoidal or has been generated by an
autoregressive process of order p or less.

RESA [1] is based on an information-theoretic derivation that is quite similar to that of
MESA, except that it incorporates an initial spectrum estimate. This prior knowledge can often
improve the spectrum estimates when a reliable estimate of the shape of the overall signal spec-

. trum is available. In the case where the initial spectral density estimate is flat, RESA reduces to
MESA.

In this paper we derive a multichannel RESA method that estimates the joint probability
,* density of a set of signals given correlations of various linear combinations of the signal and given

an initial estimate of the signal probability densities. The estimator was briefly presented in [4].
*Our basic approach is similar in spirit to the multisignal spectrum-estimation procedure in [5, 6],

but the result differs significantly because that paper not only assumed that the initial
probability-density estimates for the various signals were independent, but in effect imposed the
same condition on the final estimates as well. We show that if this assumption is not made, the
resulting final estimates are in fact not independent, but do take a form that is more intuitively
satisfying. When applied to the case of estimating the power spectra and cross spectra of a signal
and noise given selected correlations of their sum, our method first fits a smooth power spectrum
model of the signal plus noise spectrum to the given correlations. It then uses a smoothing
Wiener-Hopf filter to obtain the final estimates of the signal and the noise spectra. This Mul-
tichannel Relative-Entropy Spectrum Analysis method thus represents a bridge between the infor-
mation theoretic methods and Bayesian methods for spectrum estimation from noisy data.

The last issue we consider in this paper is treated in a more tentative and exploratory
manner. In certain filtering applications such as speech enhancement, relatively good estimates of
a stationary noise background can be found during quiet periods when no signal is present.

The work of Bruce Musicus has been supported in part by the Advanced Research Projects Agency monitored by '-e
ONR under Contract N00014-81-K-0742 NR-049-506 and in part by the National Science Foundation under Grant

* ECS80-07102.

Manucript approved October 31, 1985.

l-.-.-
.. I* * -.

" - " " " -" "" " ~~~~~~~~~~~~~~~. .. .. ..... ...... ....". ... "'-...'i--.-- o..?i.i- .- '--i. ...



7.- *1. 7:07 -. '-7

However, the signal spectrum may be changing relatively rapidly so that good initial estimates for
this spectrum are not found as easily. Unfortunately, our technique, like the Bayesian methods,
requires good initial estimates of both the signal and noise spectra. The simplest fix in the Baye-
sian estimation problem is to estimate the signal spectrum by spectral subtraction [7]. More
sophisticated Bayesian methods estimate the signal model along with the signal and iterate
between filtering steps and spectrum estimation steps [8, 9]. With these methods in mind, we con- ,
sider several modifications to our Multichannel RESA method when a good initial signal estimate
is not known. We try letting the initial signal spectrum estimate be infinite or fiat, we try spec-
tral subtraction, and we try estimating the initial signal density along with the final joint signal
and noise density. Unfortunately, none of these approaches gives a truly convincing solution to
the problem, and so the issue remains open.

II. RELATIVE ENTROPY

The Relative-Entropy Principle [10] can be characterized in the following way. Let r be a
random variable with values drawn from a set v ED with probability density q t(v). We will
assume that this "true" density is unknown, and that all we have available is an initial estimate
p (9). Now suppose we obtain some information about the actual density that implies that q t,
though unknown, must be an element of some convex set Q of densities. Suppose p *Q. Since Q
may contain many (possibly infinitely many) different probability densities, which of these should
be chosen as the best estimate q of qt? And how should the initial estimate be incorporated into
this decision?

The Relative Entropy Principle states that we should choose this final density q (9) to be
the one that minimizes the relative entropy:

tt(q,p)- f q(*)log () d,

D

subject to the condition q EQ. It has been shown [101 that minimizing any function other than
H (q, p) to estimate q must either give the same answer as minimizing relative entropy or else
must contradict one of four axioms that any "reasonable" estimation technique must satisfy.
These axioms require, for example, that the estimation method must give the same answer regard-
less of the coordinate system chosen. The function H(q,p ) has a number of useful properties: it
is convex in q, it is convex in p, it is positive, and it is relatively convenient to work with com-
putationally. If the convex set Q is closed and contains some q with H(q, p) < oo, then there
exists a q EQ that minimizes (1) [111. This solution is unique up to a set of measure zero.

Relative-entropy minimization was introduced as a general method of statistical inference
by Kullback [12] and has been advocated by a variety of authors [13, 14, 15] under a variety of
names, including cross-entropy (16], expected weight of evidence [17, p.721, directed divergence
[12, p.7], discrimination information [12, p.37], and relative entropy [18, p.19]. The principle of
Maximum Entropy [19, 20, 211 is a special case of the Relative-Entropy principle [10, 22] where
the initial density is "flat" over the domain D.

One application in which we can explicitly state the form of the relative-entropy solution q
is where we observe the expected values T of a finite set of known functions 9L (i) given the
actual density qt(v). Then the set Q of possible densities is defined by the constraints:

f gk (v )q (v) dw = 9 for k=,. .. ,M (2)

In addition, the density q (9) must be properly normalized:

f q(9) d, - 1 (3)
D

Because the constraints (2) and (3) are linear in q, the set Q of all probability densities satisfying
these constraints must be convex. If the gk are bounded functions, then Q is closed, and there-
fore there exists a density q that minimizes H(q, p) subject to the constraints (provided these

2
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are compatible with H(q, p) < oo). In fact, even when the gk are unbounded, the minimum- .
relative-entropy density q can be shown to exist under fairly general conditions; see [11] for a
statement of such results.

Given the constraints (2) and (3), we wish to choose the final estimate q(9) of qt(w) by
minimizing the relative entropy (1) subject to (2) and (3). To do this, we introduce Lagrange
multipliers X,, construct the Lagrangian:[ 1 1-

H(q, p) + (XO - 1) f q ()( - + E f ,)q(w) - (4)
D k)-I D

and set the variation with respect to q to zero. We obtain: P.
Mq (9)fp (9) exp -X0- I A# (9) (5) ..

It can be shown that if there is a solution q (9) to the constrained minimization problem, then it
must have the form (5) with the possible exception of a set of points on which the constraints
imply that q vanishes [12, p.38; Il]. Conversely, if there are multipliers X such that q (9) in (5)
satisfies the constraints (2) and (3), then q (9) must be the unique element of Q that minimizes
the relative entropy subject to the constraints [11]. When the g are complex functions, (2) is
equivalent to two real constraints for each k. We then write (5) with complex Lagrange multi-

pliers, define complex conjugate quantities g-, -- 9*, >-k = X', and let k in the sum range .*
over negative as well as positive values. In general, it is difficult to find closed-form solutions for
the Xk in terms of the constraints IA. Computational methods using gradient search have been
developed, however [23].

MI. MULTICHANNEL RELATIVE-ENTROPY SPECTRUM ANALYSIS

Let us apply this theory to estimating the spectra and cross-spectra of a set of L signals, or
"channels", xo(t), , rL-1(t), which we collect into a single vector-valued "multichannel" sig-
nal z (t)- (zo(t) . L-(t))T (In what follows, we will use italic type, such as z, P, for
scalars; bold italic, such as z, for column vectors; and Roman, such as P, for matrices. Super-
scripts T and H denote the transpose and the Hermitian adjoint, and a star denotes the complex
conjugate.)

We assume that z (t) is a bandlimited stationary random complex process. To simplify the
mathematics, we will assume that z (t) is a finite sum of complex exponentials at frequencies W.
with random vector amplitudes c.:

N-1

3-0

This involves no essential loss of generality, since an arbitrary stationary complex random process
may be approximated by the form (6) with arbitrarily small mean square error on arbitrarily large
finite time intervals by choosing the number of frequencies large enough and their spacing close
enough [24, p.36].

Let qt(CO, . . . , CN-1) be a joint probability density for the vector amplitudes c,. We can
express the correlation matrix of the signal as -

f • (t)XH(t -)d ..
R(r) ---E limo -r) o t-,-

E C."H .

* (expectation with respect to q t). Fourier transformation gives the power spectral matrix

3
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S(W.) =E [c .u

=f a. c.'q I(s . , CN -1) dC 0 .. dCN-1

Let u choose an initial probability density estimate p of q t such that the c. are independent
Gaussian random variables with zero mean and covariance P(W.):

P (CO - C-I) (- .
S-0

p c) NO ~jexp ( c1(w. )1 c5

This choice of p corresponds to choosing the initial power spectrum estimate of 5(w.) to be

P(W., f C. C5.HP (COP. CN-j~ de 0  N-

This Gaussian assumption is usually considered reasonable and is often implicit in spectrum-
* analysis approaches such as Blackman-Tukey periodograins [25] or estimation procedures such as*

Wiener-Hopf filters [26]. For further discussion of the assumed form, see [27].

Now suppose we learn correlations Rk at various lags rk of various pairs of linear combina-
*tions a4z (t) Pkjz (t ) of the vector signal components:

R E [im. J (aX~)(~ (t-ri))dt]

ajHR(rk )Pi8k kHES(,j) k'e

This rather general form includes measurements of correlations of pairs of single signal com-
ponents, ise. individual matrix elements of R(rk). As another special came, treated in the next sec-
tion, it includes measurements of autocorrelations of the sum of the signal components. With the
help of (7), this gives constraints in the standard form of (2) as follows:

rk esH S'C 3 .H5
1 r 1 k]q(o N-) co..d 1 (0

The Relative-Entropy final estimate of the probability density of the c. coefficient given the ini-
tial estimate (8) and constraints (10) is then:

(c 0, -~o, c 1) exp XO (a1),

for so:: set of Lagrange multipliers -\k, which are chosen so that q (v ) satisfies the constraints

and is normalized (2). (Again we use the device of setting X..k = X: and letting k in the sum
run ovrnegative values as well as positive. With the definitions r-, -rk, a-V fk
P-4 = ak , this ensures a real result.) Substituting the formula (8) for p (c~ ., . .N -1C) into (11)
and simplifying puts the probability density estimate into the following elegant form:

q (cop . * N-I) q Iq(c.) (12)
a -o

where

4
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and where the unknowns -h must be determined from the constraints. Substituting this probabil-
ity density into (10) and simplifying reduces the constraints to the form:

Rh= a , , Q(.) ,e ph (13)

Adjusting the Xk until the latter equations are satisfied with Q(w.) 2! 0 is a non-linear problem
that must be solved, in general, by a non-linear gradient search technique.

The amplitudes e. are a posteriori independent Gaussian random variables (i.e. have
independent Gaussian final densities). Even if the channels of z (t) are a priori independent (i.e.
have independent initial densities), so that the P(w,) matrices are all diagonal, the observation
information concerns linear combinations of the channels, and as a result the covariance of the
final density, Q(w.), will generally not be diagonal. Thus the final estimates of the various chan-
nels, unlike those in [5), will generally be correlated with each other. _

IV. SPECTRUM ESTIMATION FROM CORRELATIONS OF SIGNAL PLUS NOISE

A special case of great practical interest is that in which we observe autocorrelations only
for the sum of the signal components

Y(t)= z(t)= Tz(t) (14)
i -0

where a (1 I )T. We then have:

Rh =eT Q(w.)a (15)

These constraints are identical in form to those in (13) with ak Ph e for all k. We may
often take the signal components zi (t) to be a priori uncorrelated, so that the power spectral den-
sity matrix P(w.) is diagonal for all w,. This restriction, however, is not necessary.

The Multichannel Relative-Entropy Spectrum Analysis estimate for z (t) from (12) is givenby:

Q(y.) = P(W. Y, + e e i,,'"k" aT (16)

where the Lagrange multipliers Xk are chosen to satisfy (15). The structure of this estimate is
quite similar to the single-channel Relative-Entropy Spectrum Analysis (RESA) estimate given by
[1i except that the quantities involved are matrices. Namely, the second term inside the brackets
is the product of a scalar E, the summation, with e ie a square matrix of all trs. In the single
signal case, P(w.) and Q(w, ) become scalars, and we can replace a E eT with E; the result is
just the RESA estimate. On the other hand, there is also a close formal connection with the Mul- " "'
tisignal RESA estimate given in [51. That is equivalent to the result of replacing e E e T in (16) --
by EI, where I is an identity matrix....

The expression (16) can be put into another interesting form by using the Woodbury-
Sherman formula (A +BDC)-' =A - B AB(CA-'B +D-)-'CA

P(w,)e aTP(W.)Q(.) = v(.) - .+,.-.
C TP(w )e + (17)

fkl, .

Defining initial and final power-spectrum estimates for the summed signal y (t) by

5
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Q, (W,) = C TQ(W).
we obtain from (17):
Ie QI(w.,=P p,(l,) 2 r(W.

Q. (W-)+ P."(W.)- (
" P " @ " ) + (18)" "

I

and thus

Q (") -- 1 1 ,.,(19)"p -7 + X k , ,-
This is precisely the form of the single-signal RESA final estimate with initial estimate P., (P.)

We can write (15) as --

Rk = 3Q,,(w. ) (20) :..

The Lagrange multipliers in (19) must be chosen to make Q, (w.,) satisfy the correlation con-
straints (20). We can thus determine Xh in (18) by solving a single-channel problem. That pro-
vides everything necessary to determine the solution Q(w.) of the multichannel problem. We can
in fact express Q(w. ) directly in terms of Q, (w.) and P(w. ); from (17) and (18) we obtain

Q .(W . P 37 ( ,,. ). -
Q(.) = P(W.) + P(l) P(w.)e CTP(w.) (21)

These equations summarize the Multichannel Relative-Entropy Spectrum Analysis method for
correlations of a sum of signals. The calculation of the final spectral matrix proceeds in two
steps. First we must find Lagrange multipliers such that the final estimate of the power spectrum
of the sum of signals, Qn (w. ) in (19), has the observed correlation values (20). Computationally,
this generally requires a nonlinear gradient search algorithm to locate the correct Xk [231. Next
the final spectral density matrix, Q(w.) in (21), containing the cross-spectra as well as the power
spectra of the individual signals, is formed by combining a linear multiple of the fitted power
spectrum Q. (w-) with a constant term that depends only on the initial densities.

Frequently the multichannel signal z (t) will comprise just two components, a signal a (t)
and an additive disturbance d (t):

si(t )+ (t ) E .(2
• -0 '''''

The initial estimate takes the form

P(W) P(w) J EL J(a ,*) .-.6

The expression for P, (P,) specializes to:

Pa(W.)= 1I ) P(.) - E a. +.

We also define the initial cross-power spectra of s (t) and d (t) with respect to y (t) as follows: ...-

Pd., (U,)ft PY ) I"

6
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We define the components Q.. (W.), Q," (we), Q" ((), A)Qf (we), Q,, (w.) and Q, (w.) similarly.
Then (21) becomes: Qw) (

QW(W.)-py'(,.) [P.V(.)}""'"
Q(W,.) = P(W) p, P.(W) P,4 (w) (23)

An alternative formula for Q(w.) in terms of Q,, (w ) is:

P-7(we)

))t 1 (W1 -1 ) (24) -- ".Q(W.)=Q"(W.) P"(w. + (2(4)) -
P -(we ,l i

V. INTERPRETATION OF MULTICHANNEL RESA lag

The formulas defining Multichannel RESA have an interesting and profound structure that
may not be obvious at first glance. First of all, formula (21) makes it easy to state conditions
under which the matrix estimate Q(w.) is positive definite. Next, the appearance of Qv (w.) in
the constraint equation for the X, is actually something we should have expected by the property
of subset aggregation that Relative-Entropy estimators satisfy [28]. Furthermore, formula (24),
which builds the spectral density matrix estimate Q(w,) by linearly filtering the fitted model
spectrum Q1, (we), is identical in form to the standard Bayesian formula for the final expected
power and cross-power in two signals given the value of their sum. In particular, the first term in
(24) applies the well-known Wiener-Hopf smoothing filter [26] to Q,, (we), while the second term
can be interpreted as the expected final variance of o. and 6,. Finally, we will show that the
relative entropy H (q, p ) has the same form as a generalized Itakura-Saito distortion measure Irk
[29]. Thus minimizing relative entropy in this problem is equivalent to finding the spectral matrix
Q(w.) with minimum Itakura-Saito distortion.

A. Positive Definiteness

Assume that the initial spectral density matrices are positive definite, P(w.)>O; then
P, (w)>O also for all we. This implies that Q(w.) in (21) is at least well-defined, provided we
can find some Q. (we) that satisfies the correlation constraints. Assume moreover that Q,, (we)
is strictly positive, Q, (w, )>0. Let v be any nonzero vector. Since P(w. ) is positive definite,
we can write a = a* + 9 for some scalar a and some vector v such that vHP(w. )e - 0.
Then (21) implies *HQ(w. )V = [ a I 2Q. (W) + WHp(W,)V, and at least one of the two terms
on the right-hand side must be positive. Thus •HQ(w. )U > 0 for every nonzero vector us; that
is, Q(w.) is strictly positive definite, Q(w, )>0.

* B. Subset Aggregation Property

Consider the following two approaches to estimating the final density of the frequency corn-
ponents o, a ., +6. of y() s (t )+d (t), or equivalently, estimating the final power spectrum

Method #1:
a) Apply Relative Entropy to estimate the joint final density of Os, 6,:

q[ "  N- (0 Q.'::.

7

. .
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b) Form the final density q (q.) for U. =an+b. from q :

Method #2:

a) Form an initial probability density estimate p (7,) from p ( :
((q.)1 ) NP(w,) 1 N 0,P(w,

b) Solve the Relative-Entropy problem to find the final density of q (T7,) given the con-
straints on the correlations of y (t) and the initial density p (q.

Method #1 is exactly the approach we have taken in this paper-the resulting spectrum estimates
Q$ (W.) = (1 1 ) Q(W. ) ( 1 )T are given by equations (20) and (19). According to the theory
of Relative Entropy, both methods for estimating q (iq, ) ought to give identical results. In fact, if
we follow method #2 and apply the Relative-Entropy result in (16) to the "single-channel" signal
y (t), we will find the following final density estimate ? for y (t):

N-1
70,. "N-i) 1 (.)

N( 0

where

= I P(- - + (W x. k.-)

and the Lagrange multipliers Xk are chosen so that the correlations of Qw (w,) have the correct
values:

Rh =~ E ,(w,,)c'' ""',""
Rk qa

As expected, these formulas for i7, (wP.) are identical to those for Q, (w.) in (19) and (20), and
thus the two methods do indeed give identical results.

C. Bayesian Filtering Interpretation .
"
1

'

Formula (24) appears complicated, but it is in fact precisely the same form as the result

found by a purely Bayesian approach to the problem. Consider the following situation. Suppose
we are given, not the correlations Rk, but the actual exact frequency components r7. of y (t).
What is the final density of a. and 6 given these values o,, -ar +6. ? We will take a purely
Bayesian approach. Because o,. and 6. are a priori jointly Gaussian, so are a. and vl,, their -.

joint density is

or,, - N 0 P,(W,) P,(w,) (25)
174~~.= Pr(W . W

Now given q,,, we can find the conditional density of a. given ,, by the standard Bayesian for-
mula:

8



~-N' Pqw,.).___.__-Pa (W Pay (W. )P (W
p(o ) p(W,) (a. , P.(w,.) p(,) (26)

Let us define the Bayesian estimate QB (w.) of the power spectral density matrix of (a, 6. )T

given . as follows: r.1..

But then:

QB(w,.) =E -{ a . ) 1 7."

1 ( W E 7C"
1 r 1(27)

=E J . E O' s .- O. U s 1 . + Var i.' .'.

Substituting the final mean and variance of a. given q, in (26) into (27) and recognizing that: -

P. )P (.-J. )-P0, (W. )P(w) __ 1 det P (W
P - ( w .) P r ( wI P , (W . ) P , (W : )"-

-:, -- prr (w. ,1 det P(uw.,,:"

gives:

Po, (w.)

PO(w ) P'.(w,.) P'd(w,.) + 1 det p(w,.)

P(QB,(w:) .P(W.) P( (W ) P. (W. (28)

This Bayesian spectral density estimate, however, is identical in form to the Multichannel
Relative-Entropy Spectrum Analysis estimate Q(w,.) in (24), except that the Bayesian method
uses the known signal plus noise spectral power 17,. J 2 in (28) while the Multichannel RESA esti-
mate must use the smooth fitted signal plus noise power spectrum estimate Q" (w,.). This simi-
larity between the two methods provides an interesting interpretation of the Multichannel RESA
formula. The first term in (24) is the product of the expectation of ( a. 6. )T and the expecta-

tion of ( a: 6: ). The vector elements P, (w,. )/PV (w,.) and Pj, (w,. )/P, (w,) are exactly the
smoothing Wiener-Hopf filter expressions that arise when estimating a signal ( T. 6. )w from an
observation %h. The second term in the Multichannel RESA estimate depends only on the prior
information and corresponds to the a posteriori covariance of the spectrum estimates. The term: _

det P(w.)

* thus can be used as a crude estimate of the variance of our model at w..

D. Asymptotic Behavior

It is interesting to examine how the Multichannel Relative-Entropy algorithm performs in
* the asymptotic limit as the true correlations of the signal plus noise are known at all possible lags,

In this asymptotic limit, the only solution Q, (w.) that can possibly satisfy all the correlation V.
. constraints is the true power spectrum of the signal plus noise. Unfortunately, the allocation of

this power between the signal and noise spectral estimates and cross-spectrum estimates is deter- ..
mined entirely by the initial estimates of these spectra via the formula (24). Therefore, beyond a r

, certain limit, gathering more and more correlation values will only improve the estimate of
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Q1 (w.) and will not improve the estimates of the signal or noise power spectra or crow-power
spectra.

E. Generalized Itakira-Saito Distortion Mesure '

If we substitute any zero-mean, Gaussian densities

and q(.) - N( 0 , Q(w.) ) .

p(a.) - N( 0, P(w.) )

into the relative-entropy formula we gt:-

H(q,p): = tr Q( 1 . )P(w5 ) -I -log det( Q(w.)P(w) )

This is just a generalized version of the Itakura-Saito distortion measure [291. We therefore could
have derived the same spectrum estimate by minimizing the Itakura-Saito distortion measure over
all possible spectral matrices Q(w. ) subject to the constraints (13).

VI. COMPUTATIONAL CONSIDERATIONS *1I' "'

The difficult step in the Multichannel RESA procedure is to solve for the Lagrange multi-
pliers that will give Q. (w,) the appropriate correlations in (20). Gradient search algorithms for
computing this in general are given by Johnson [23). Once Q. (w ,) is known, the components of
Q(w,) may be easily found by filtering Q, (w,) and adding in the final covariance estimate, an
amount of computation that is linear in the number of frequency samples.

One special case is particularly easy to solve. This is when correlations of y (t ) are given
for uniformly spaced lags T -p ,-p +1, . . . , p and when the initial spectral density of the sig-

' nal plus noise, P,,( ) ( 1 1 ) P(W ( 1 1)T is autoregressive of order at most p. Let us
take the limiting form of our equations for equispaced frequencies as the spacing becomes -.

extremely small, so that we can treat the spectral densities as continuous functions of w. Then
because P,, (w.,) is autoregressive (all-pole), the term 1/P, (w.) in the denominator of

""Q,,(w ) = ____ " _____

.... + k

-d-

has the same form as the sum over k. We can therefore combine coefficients in the two sums and
write

QoV-.M

where 6-p, Op are to be determined so that:

dw
R1, f Q. Me 27r..-

This, however, is the standard Maximum Entropy Spectrum Analysis problem (MESA), and can
be solved with O(p2 ) calculation by Levinson recursion [30, 31, 32]. Thus in this special case, the
power spectrum of the signal plus noise Q,1 (w) will be set to the MESA estimate. The initial esti-
mate P,, (w) will be completely ignored in this step. (This is an example of "prior washout", as
discussed by Shore and Johnson [28]. ) The spectral density matrix estimate Q(w) for a (t) and.-e
d (t) will then be formed as the appropriately filtered function of this MESA spectrum. In this
case, therefore, the prior information is used solely to control how the estimates for the signal and

1-0
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the disturbance are to be obtained from the MESA estimate. Note that although P. (w) and
Qw (w) will both be autoregressive spectra, the individual components of the spectral density
matrices P(w) and Q(w) will generally not be autoregressive.

VII. UNKNOWN INITIAL SIGNAL POWER SPECTRUM ESTIMATE

One potential difficulty in applying our Multichannel RESA algorithm is that, like the Baye-
sian algorithm, it requires good prior knowledge of both the signal and the noise spectra. Unfor-
tunately, in some applications such as speech enhancement, good prior knowledge may be avail-
able only about the noise spectrum. In such cases it will be necessary to choose an initial esti-
mate of P.. (w.) by some rule.

In [8], the method of [5] is extended to allow for the possibility that not all initial estimates
are equally reliable. It is shown how to ausociate weights with initial estimates. When there is a
good initial noise estimate but a poor initial speech estimate, one gives a large weight to the ini-
tial noise estimate and a small weight to the initial speech estimate. The result is that the final
noise estimate tends to stay close to the initial estimate, while the final speech estimate does most
of the varying to conform to the constraints. An analogous method for incorporating weights in
our present procedure would be desirable, but we do not yet have such a method. Straightfor-
ward imitation of the development in lo], but without the assumption of independent final esti-
mates, yields final estimates that do not depend on the weights introduced. Accordingly we
explore several other approaches.

The one that probably best fits the general philosophy of Multichannel RESA is to assume
that the signal and noise are a priori independent, and that the initial signal density
p ( 0, aN- ) is "fiat" over the domain of interest, or equivalently, that the signal variance is
very large. Substituting this fiat initial signal density times a zero-mean Gaussian initial noise
density into the relative entropy formula (1), and then solving for the resulting spectral estimate
Q(w. ) yields:

0 0
Q(W. ) x +

This is the same solution as (16) but with Pd (w. )-0 and with P.. (w.) set to infinity. Inverting
the spectral matrix and using the same algebraic manipulations as before gives the following
equivalent formula for Q(w.):

Qxw, eIwr
Q (. + _ P. P. Pdd(

Q( .) = _Pm (W.) P, (W. }A::-:-

This, unfortunately, is not quite the answer one might have expected. We first fit a smooth
autoregressive spectrum Q. (w.) to the correlations of the signal plus noise; this is exactly the
MESA spectrum estimate, and it ignores the prior information about the noise. This spectrum is
then allocated between the signal and noise in a rather peculiar way: the signal spectrum is
estimated by adding the noise spectrum to the smooth estimate of the signal plus noise. Also the
final noise power spectrum is estimated as exactly equal to the initial noise spectrum P," (w );%
none of the observed data affects this estimate at all.
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In retrospect, this structure is not terribly surprising. We started by assuming infinite signal
, variance at all frequencies. The observed correlation data is then taken into account by striking a

compromise between the fitted noisy power spectrum Q, (w.) and the prior belief that .0
P. (w.) oo. This compromise, inevitably, is larger than the fitted noisy signal spectrum.
Because virtually nothing is known about the signal, any deviation of 9,, (w.) from the noisy
spectrum P" (w. ) is considered to be due to the signal, and thus the initial noise spectrum esti- .
mate is accepted as truth.

Thus, although setting P. (w.) oo may be the philosophically correct approach when no
information about the signal is given, it leads to results that are counterintuitive and not very
useful. The problem is that we generally know something about the signal, if only that it has
finite energy. This might lead us to consider choosing as the initial signal density estimate a den-
sity that has maximum entropy subject to a constraint on the total signal energy. This
corresponds to an initial signal power spectrum estimate that is fiat across all frequencies, with
constant value P 0 . The problem is picking a good choice for P 0 . Choose P 0 too small and most
of the fitted spectrum Q, (w.) will be allocated to the noise; choose it too large, and most of
Q, (w.) will be allocated to the signal. P0 thus becomes an experimental parameter that must
be varied to achieve a desirable effect.

Another, more ad hoc idea is to try estimating P,. (w.) by spectral subtraction. Suppose we
are given the observed data waveform y (t) with complex exponential amplitudes q.,, To obtain

the initial signal power spectrum estimate, subtract the estimated noise power from the observed
periodogram and clip the result to positive values:

P..(W.) = max( t 1 2-Pu(wa),0 ) (29) .

Then calculate a few low order correlations from I (t), and combine them with this initial esti-
mate to estimate Q(w. ). Unfortunately, unless I '1 dips below P (w.) over significantly
large numbers of frequency samples, it is easy to see that our estimation procedure will approxi-
mately set:..: <:;,,,~Q (W.) . W, (,W., f max q , . P,+,(.)) (30)

:::: Q ( "+) 'P P .") 0 P , ,i P, ) :

This spectrum estimate unfortunately differs little from the spectral subtraction estimate, and it
has the large variance of the periodogram, a situation that Multichannel RESA was supposed to
cure.

We consider one final approach, which seems too reasonable to resist. Since the initial sig-
nal density is unknown, one might argue, perhaps it should be estimated along with the final den-
sity q. This turns out to be a rather bad idea, but is interesting enough to pursue for a while.
Let us assume that the signal and noise are a priori independent, so that:

p (A,6) = P. (.)pd (6) (31)

We will assume that the noise density pd (8) has the form in

-- i

p () p - (32)k

p (6.) N(0, Pm (w.)

but that the initial signal density p, (w) is to be estimated along with the final joint density q (ef,6)
by minimizing the relative entropy over both q and p, subject to the correlation constraints on
q. We write this as:
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q, -- ain H(q, p,p) (33),
• .cQ. ,*

where Q is the set of densities satisfying the correlation constraints (15). Let us solve this minim-
ization iteratively, minimizing first over all q EQ, then over all p, iterating back and forth until
the estimates converge: '..J

• ~ ~~For k =--0, 1, •••

For k.OI mq+l- n H(q, p, pd) (34)

,EQ

- min H (qk 1, p. p1)
rs

The first problem is precisely our usual Multichannel RESA algorithm for estimating the final
density q (cr,5) from the initial density p,, ()pd (5) and the correlations Rk. To solve the second
step, factor q (41,S) = q (o)q (0 1 w) and rewrite H(qk ,p. pd) in the form:

H(qk+lp. p4)= f q,+,() log q + do' (35) ".P,

+ f f qh+ (, 5 ) log q,+1(5 U) dco-
Pd

*i Since p. (o) only appears in the first term, and since this first term is bounded below by 0, the
minimum of H(qh+ 1, p. Pd) over p. is achieved by:

Pe~lo' =qk+l(a') =f q 1 +1 (cr,6) do' (36)

* Putting all this together implies that q (a',5) will generally be Gaussian with the same form as
before, and that p,,+(o) will also be Gaussian with covariance P,, (w.)-= Q,. (W,). The com-
plete iterative algorithm then takes the following form:

Guess P. (w.)
For k =0,1,•

a) Use the Multichannel RESA algorithm to compute Q(w.)

b) Set P. (w.) =Q.. (w
Thus we run our usual Multichannel RESA algorithm to get a good estimate of our signal and
noise spectra. We then set our initial signal spectrum estimate to this improved final signal spec-
trum and iterate. The improved initial density should lead to an even better final density. Each
iteration drives the relative entropy to ever smaller values, and thus each set of spectrum esti-
mates ought to be better than the last.

Alas, appearances can be deceiving. This idea of feeding the Multichannel RESA process
back on itself, using the final estimates as a new initial estimate for the next iteration, has been
informally suggested by numerous researchers, but in this case, where the procedure converges
depends entirely on where it starts. The problem is that the original double minimization prob-
lem (33) may have infinitely many solutions. For example, suppose there is at least one spectrum
Ply (w.) that is larger than the initial noise spectrum estimate, P.(w, )>P (W.), and has the
correct correlations Rk. (There may be infinitely many such densities.) Let
P.. (.) P. (w. ) - Pdj (w ,). Then the corresponding initial density p. (a)pd (6) will satisfy the

* constraints (15), and thus the Relative-Entropy final estimate will just be q (a',8) = p, (o')pd (5)
and the Relative Entropy at this solution will be H(q, p, p1) 0 0, which is as low as it will ever
get. Because there could be an infinite number of choices for P, (P.), this relative entropy prob-
lem could have an infinite number of minimizing solutions. Which solution our iterative algo-
rithm converges to will thus depend on where we start. It could be argued that this iteration is so
appealing that perhaps we should use it anyway, but stop after only a couple of iterations. Unfor-
tunately, this approach is difficult to justify on anything but empirical grounds.
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VIII. IMPROVING THE ESTIMATES WITH ADDITIONAL KNOWLEDGE

The spectral estimates gained from the Multichannel RESA algorithm can be significantly
improved if additional knowledge about the process can be incorporated. We will discuss two
particular types of knowledge which improve the spectral estimates substantially for the case

* where we observe correlations of signal plus noise.

Suppose that we observe the correlations Rh of a signal plus noise, V (t) a . (t) + d (t), as
in section IV. Suppose, however, that we add the constraint that the signal and noise are known
to be independent, so that the densities must have the form:

P (' 0, ,N-1,6, , 6 N-1) = P (0o, iN-1) P (40, , 6N-I) (37)

and:

q (u0, • . N-, • . N-I) - q (o0, •. , q-,) q (40, . ,-,) (38)

If we solve the Minimum Relative Entropy problem with this additional restriction on the form of
q, then we will find that the spectral estimate Q(w,1) is now a diagonal matrix with elements
Q.(.)= Qd.(.) = 0, and:

Q (W)(39)

+ "

The Lagrange multipliers Xt are chosen so that the sum of these spectra,
Q. (w.-)= Q. (w,.) + Qw (w.) has the correct correlations. These formulas are precisely the
results given by Johnson and Shore [5].

In addition to the independence constraint, in some cases we may believe that our noise
model is quite accurate, and may wish to constrain the noise density to exactly match our a priori
noise model:

q (6o, ... 6N-1) p (6o, , 6N-1) (40)

With this additional constraint, the Minimum Relative Entropy solution now gives
Q (w.) Pm (w.), Qd (w.)- Q (w1. =0, and:

Q. ( ,) = 1 (41
I + X, I Wr' 41

where the Lagrange multipliers X are again chosen so that Q,1 (w,) = Q,0 (w,) + QU (W ) has
the correct correlations. Since Q" (w.) is known to equal Pid (w.), however, this is equivalent to
choosing the Xf so that:

Q(W. ) e Rh - _ Pj (w,, ) e ,,e (42)

The right hand side is just the observed correlations minus the contribution due to the noise, and
is therefore an estimate of the signal correlations. With the added assumption of independence
and known noise spectrum, therefore, our Multichannel RESA method acts like a correlator-
subtractor technique [7], subtracting the noise correlations from the observed correlations, and
then fitting a standard RESA model to these estimated signal correlations.
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IX. EXAMPLE

We define a pair of spectra, S and S,,, which we think of as a known "background" and
an unknown "signal" component of a total spectrum. Both are symmetric and defined in the fre-
quency band from -i to r, though we plot only their positive-frequency parts. (The abscissas in .
the figures are the frequency in Hz, w/27r, ranging from 0 to 0.5.) S" is the sum of white noise
with total power 5 and a peak at frequency 0.215X2r corresponding to a single sinusoid with
total power 2. S, consists of a peak at frequency 0.185 X2ir corresponding to a sinusoid of total :

power 2. Figure I shows a discrete-frequency approximation to the sum S. + $ , using 100
equispaced frequencies. From the sum, six autocorrelations were computed exactly. S itself '

was used as the initial estimate P" of S. For P. we used a uniform (flat) spectrum with the
same total power as P". The two initial estimates are shown in Figure 2. Figures 3 and 4 show
multisignal RESA final estimates Q" and Q. by the method of [51 -independence was assumed
for the final joint probability densities of the two signals. Figures 5 and 6 show final spectrum . ,
estimates obtained by the present method from the same autocorrelation data and initial spec-
trum estimates. The initial cross-spectrum estimates were taken to be zero (P was diagonal). No
such assumption was made for the final estimate, of course, and indeed the final cross-spectrum
estimates (not shown) are non-zero. Figures 7 and 8 show final estimates for the total spectrum of
signal plus noise by the methods of (51 and this paper, respectively. Figure 7 is just the sum of
Figures 3 and 4. Figure 8 coincides with the single-signal RESA final estimate obtained when
P" + P,. is used as the initial estimate; it is not the sum of Figures 5 and 6, since it includes
contributions from the cross-spectrum estimates.

In the results for both methods, the signal peak shows up primarily in Q,, but some evi-
dence of it is in Q" as well. Comparison of Figures 5 and 6 with Figures 3 and 4 shows that
both final spectrum estimates by the present method are closer to the respective initial estimates
than are the final estimates by the method of (5]

In view of the fact that the present method has the logically more satisfying derivation and
is computationally cheaper, the comparison of Figure 6 with Figure 4 is somewhat disappointing;
the signal peak shows up less strongly in Figure 6. It must be pointed out, however, that in this
example the signal and noise are truly uncorrelated. Our technique does not use this information,
and in fact estimates a non-zero cros-correlation between the signal and noise. The method in
[5], however, uses this additional knowledge and therefore, in this case, is able to produce better
estimates than our technique.
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X. DISCUSSION ."

In this paper we have derived a Multichannel Relative-Entropy Spectrum Analysis method
that estimates the power spectra and cross-spectra of several signals, given an initial estimate of
the spectral density matrix and given new information in the form of correlation values for linear
combinations of the channels. Both this method and the multisignal method of [5] will estimate
the power spectra of a signal and noise when prior information is available in the form of an ini-
tial estimate of each spectrum and given selected correlations of the signal plus noise. The
present method can accept more general forms of correlation data and also produces cross- --

spectrum estimates, which are implicitly assumed to be zero in [5]. Even when the only correla-
tion data are for the signal plus noise, and cross-spectrum estimates are not desired, there is a
persuasive argument for preferring the present method to that of [5] -if the discrepancy between
the given correlation values and those computed from the initial estimates can be accounted for in
part by correlations between the signal and noise, then the correlation data should be regarded as
evidence for such correlations, and correlated final estimates should be produced.

Estimates by the present method are considerably more economical to compute than esti-
mates by the method of [5]. The algorithm first fits a smooth model power spectrum to the noisy
signal using the given correlations. The available prior information is then used to linearly filter
this spectrum estimate in order to obtain separate estimates for the signal and the noise. This
allocation formula is virtually identical to that used by the usual Bayesian formula in which the
signal and noise power spectra are estimated from the observed signal plus noise spectrum. The
difference between the Multichannel RESA and Bayesian methods is that the relative-entropy
technique starts by fitting a smooth power spectrum model to the observed correlations, while the
Bayesian approach starts with the directly observed power spectrum. This Multichannel
Relative-Entropy technique thus provides a smooth model fitting spectrum analysis procedure
that is closely analogous to the Bayesian approach. If p uniformly spaced correlations are given,
and if the prior information suggests that the power spectrum of the signal plus noise is autore-
gressive of order at most p, then the step of fitting a smooth model spectrum to the noisy signal
is identical to using a standard MESA algorithm to fit a smooth autoregressive model to the given
correlations. We concluded by searching for a way to treat the case where no prior information
about the signal is known. Unfortunately, we were not able to find a theoretically sound
approach with desirable characteristics.

In general, the method presented in this paper yields final spectral estimates that are closer
to the initial estimates than those of [5]. This is not surprising. Our method starts with an initial
estimate of the signal and noise spectra, and uses correlations of the signal plus noise to get better
power spectra estimates. The method in [5] uses the same information, but also assumes that the
signal and noise are uncorrelated. This additional knowledge further restricts the constraint space
Q in which the probability density is known to lie, effectively leaving less unknown aspects of the
density to estimate, and thus improving the final spectra. In general, the resulting spectral esti-
mate will have higher relative entropy than the solution from our method, and will thus be
"farther" from the initial density p than the solution from our method.

Our estimate of Q, (w,) can be improved by observing more and more correlations of the
signal plus noise. Regardless of how much data is gathered, however, our method relies
exclusively on the initial estimate of the signal and noise spectra and cross spectra to allocate
Qv (w,) between the signal, noise, and cross terms. The fundamental difficulty is that observing
correlations of the signal plus noise gives no insight into how this observation energy should be
partitioned between the signal and the noise. Achieving accurate estimation of the signal and
noise spectra separately requires a different type of observation data. Learning that the signal
and noise are uncorrelated as in [5], for example, will improve our spectral estimates, as would
learning the exact noise power spectrum. The best solution, of course, would be to use an accu-
rate model of the signal and noise processes, or to directly observe the signal and/or noise correla-
tions.
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